正常的胎儿脂肪组织(AT)发育对于围产期健康至关重要。在或简单地脂肪以脂质形式存储能量。营养不良可能导致过度或耗尽的肥胖。尽管以前的研究表明,AT和围产期结局的量之间存在相关性,但缺乏定量方法,对AT的产前评估受到限制。使用磁共振成像(MRI),可以从两个点Dixon图像中获得整个胎儿的3D脂肪和纯水图像,以在脂质定量时启用。本文是第一个提出一种基于Dixon MRI的胎儿脂肪分割的深度学习方法的方法。它优化了放射科医生的手动胎儿脂肪描述时间,以生成带注释的培训数据集。它由两个步骤组成:1)基于模型的半自动胎儿脂肪分割,由放射科医生进行了审查和纠正; 2)使用在所得的注释数据集中训练的DL网络的自动胎儿脂肪分割。培训了三个DL网络。与手动分割相比,我们显示出分割时间(3:38小时至<1小时)和观察者变异性(0.738至0.906)的显着改善。用3D残差U-NET,NN-UNET和SWIN-UNETR TRONSERTER网络对24个测试用例进行自动分割,平均骰子得分分别为0.863、0.787和0.856。这些结果比手动观察者的变异性更好,并且与自动成人和小儿脂肪分割相当。一名放射科医生审查并纠正了六个新的独立案例,并使用最佳性能网络进行了细分,导致骰子得分为0.961,校正时间显着减少了15:20分钟。使用这些新颖的分割方法和短暂的MRI获取时间,可以在临床和大型果园研究中量化全身皮下脂质的单个胎儿。
translated by 谷歌翻译
We present Azimuth, an open-source and easy-to-use tool to perform error analysis for text classification. Compared to other stages of the ML development cycle, such as model training and hyper-parameter tuning, the process and tooling for the error analysis stage are less mature. However, this stage is critical for the development of reliable and trustworthy AI systems. To make error analysis more systematic, we propose an approach comprising dataset analysis and model quality assessment, which Azimuth facilitates. We aim to help AI practitioners discover and address areas where the model does not generalize by leveraging and integrating a range of ML techniques, such as saliency maps, similarity, uncertainty, and behavioral analyses, all in one tool. Our code and documentation are available at github.com/servicenow/azimuth.
translated by 谷歌翻译
Reinforcement learning is a machine learning approach based on behavioral psychology. It is focused on learning agents that can acquire knowledge and learn to carry out new tasks by interacting with the environment. However, a problem occurs when reinforcement learning is used in critical contexts where the users of the system need to have more information and reliability for the actions executed by an agent. In this regard, explainable reinforcement learning seeks to provide to an agent in training with methods in order to explain its behavior in such a way that users with no experience in machine learning could understand the agent's behavior. One of these is the memory-based explainable reinforcement learning method that is used to compute probabilities of success for each state-action pair using an episodic memory. In this work, we propose to make use of the memory-based explainable reinforcement learning method in a hierarchical environment composed of sub-tasks that need to be first addressed to solve a more complex task. The end goal is to verify if it is possible to provide to the agent the ability to explain its actions in the global task as well as in the sub-tasks. The results obtained showed that it is possible to use the memory-based method in hierarchical environments with high-level tasks and compute the probabilities of success to be used as a basis for explaining the agent's behavior.
translated by 谷歌翻译
Data Centers are huge power consumers, both because of the energy required for computation and the cooling needed to keep servers below thermal redlining. The most common technique to minimize cooling costs is increasing data room temperature. However, to avoid reliability issues, and to enhance energy efficiency, there is a need to predict the temperature attained by servers under variable cooling setups. Due to the complex thermal dynamics of data rooms, accurate runtime data center temperature prediction has remained as an important challenge. By using Gramatical Evolution techniques, this paper presents a methodology for the generation of temperature models for data centers and the runtime prediction of CPU and inlet temperature under variable cooling setups. As opposed to time costly Computational Fluid Dynamics techniques, our models do not need specific knowledge about the problem, can be used in arbitrary data centers, re-trained if conditions change and have negligible overhead during runtime prediction. Our models have been trained and tested by using traces from real Data Center scenarios. Our results show how we can fully predict the temperature of the servers in a data rooms, with prediction errors below 2 C and 0.5 C in CPU and server inlet temperature respectively.
translated by 谷歌翻译
背景:基于学习的深度颈部淋巴结水平(HN_LNL)自动纤维与放射疗法研究和临床治疗计划具有很高的相关性,但在学术文献中仍被研究过。方法:使用35个规划CTS的专家划分的队列用于培训NNU-NEN 3D FULLES/2D-ENEBLEN模型,用于自动分片20不同的HN_LNL。验证是在独立的测试集(n = 20)中进行的。在一项完全盲目的评估中,3位临床专家在与专家创建的轮廓的正面比较中对深度学习自动分类的质量进行了评价。对于10个病例的亚组,将观察者内的变异性与深度学习自动分量性能进行了比较。研究了Autocontour与CT片平面方向的一致性对几何精度和专家评级的影响。结果:与专家创建的轮廓相比,对CT SLICE平面调整的深度学习分割的平均盲目专家评级明显好得多(81.0 vs. 79.6,p <0.001),但没有切片平面的深度学习段的评分明显差。专家创建的轮廓(77.2 vs. 79.6,p <0.001)。深度学习分割的几何准确性与观察者内变异性(平均骰子,0.78 vs. 0.77,p = 0.064)的几何准确性无关,并且在提高水平之间的准确性方面差异(p <0.001)。与CT切片平面方向一致性的临床意义未由几何精度指标(骰子,0.78 vs. 0.78 vs. 0.78,p = 0.572)结论:我们表明可以将NNU-NENE-NET 3D-FULLRES/2D-ENEMELBEND用于HN_LNL高度准确的自动限制仅使用有限的培训数据集,该数据集非常适合在研究环境中在HN_LNL的大规模标准化自动限制。几何准确度指标只是盲人专家评级的不完善的替代品。
translated by 谷歌翻译
使用数学模型(例如易感性暴露于易感性的(SEIR)(SEIR),Logistic回归(LR))和一种称为多项式回归方法的机器学习方法进行了对哥伦比亚疾病共同19的分析研究。先前的分析已经对每天的病例,死亡,感染者和暴露于该病毒的人进行了分析,所有这些病例都在550天的时间表中所有人。此外,它使感染扩散的拟合详细介绍了较低的传播误差和统计偏差的最佳方法。最后,提出了四种不同的预防方案,以评估与该疾病有关的每个参数的比率。
translated by 谷歌翻译
本文介绍了用于检测,位置和跟踪颜色对象的嵌入式视觉系统的开发;它利用单个32位微处理器来获取图像数据,过程并根据解释的数据执行操作。该系统旨在用于需要使用人工视觉进行检测,位置和跟踪颜色对象的应用程序,其目标是以降低的规模,功耗和成本的范围实现。
translated by 谷歌翻译
本文简要审查了不同的空间填充曲线(SFC),并提出了新的曲线。一个世纪已经过去了这类曲线的建立,从那以后,它们在计算机科学中被发现有用,尤其是在数据存储和由于它们的聚类特性而引起的索引,成为希尔伯特曲线是分形家族中最知名的成员。本文介绍了所提出的阿兹台克曲线,具有与希尔伯特曲线相似的特征,并伴随着语法描述。它产生了创建双维簇的可能性,不适合希尔伯特(Hilbert)和佩恩诺(Peano)曲线。除此之外,还实施了在压缩传感范围上应用的情况,其中希尔伯特曲线的使用与阿兹台克曲线形成鲜明对比,具有相似的性能,并将AZTEC曲线定位为可行的,并将其定位为可行的新替代方法使用SFC的应用程序。
translated by 谷歌翻译
一种共同的销售策略涉及让帐户高管(AES)积极联系并与潜在客户联系。但是,并非所有的接触尝试都有积极的效果:有些尝试不会改变客户的决策,而另一些尝试甚至可能会干扰所需的结果。在这项工作中,我们建议使用因果推断来估计与每个潜在客户联系并相应地制定联系政策的效果。我们从在线珠宝市场worthy.com上证明了这种方法。我们研究了有价值的业务流程,以确定相关的决策和结果,并对他们制定的方式进行正式的假设。使用因果工具,我们选择了一个决策点,改善AE接触活动似乎是有希望的。然后,我们制定了一个个性化的政策,建议仅与对其有益的客户联系。最后,我们在3个月内验证了A \ B测试中的结果,从而导致目标人群的项目交付率增加了22%(p值= 0.026)。现在,该政策正在持续使用。
translated by 谷歌翻译
目前,数据赢得了用户生成的数据和数据处理系统之间的大鼠竞赛。机器学习的使用增加导致处理需求的进一步增加,而数据量不断增长。为了赢得比赛,需要将机器学习应用于通过网络的数据。数据的网络分类可以减少服务器上的负载,减少响应时间并提高可伸缩性。在本文中,我们使用现成的网络设备以混合方式介绍了IISY,以混合方式实施机器学习分类模型。 IISY针对网络内分类的三个主要挑战:(i)将分类模型映射到网络设备(ii)提取所需功能以及(iii)解决资源和功能约束。 IISY支持一系列传统和集合机器学习模型,独立于开关管道中的阶段数量扩展。此外,我们证明了IISY用于混合分类的使用,其中在一个开关上实现了一个小模型,在后端的大型模型上实现了一个小模型,从而实现了接近最佳的分类结果,同时大大降低了服务器上的延迟和负载。
translated by 谷歌翻译